什么是激光器,激光器技術(shù)原理介紹
在當(dāng)今科技飛速發(fā)展的時代,激光技術(shù)以其獨特的優(yōu)勢,在眾多領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力。歐光科技,作為激光技術(shù)的先驅(qū),始終致力于關(guān)注激光技術(shù)的創(chuàng)新與應(yīng)用。本文將詳細介紹激光器的基本原理,下面一起詳細了解吧。

激光,作為一種特殊的光源,具有單色性好、方向性好、亮度高等特點。1917年,愛因斯坦提出的“受激發(fā)射”理論,為激光技術(shù)的發(fā)展奠定了理論基礎(chǔ)。簡單來說,激光就是一束高度集中的光,其亮度遠超普通光源,能夠產(chǎn)生極高的能量。這種能量的產(chǎn)生依賴于激光器,一種專門設(shè)計的設(shè)備。
在激光器中,核心部件是一根名為YAG的灰色棒狀物,即釔鋁石榴石。這種材料中摻雜了釹元素,使得其呈現(xiàn)出獨特的粉色。釹元素的不穩(wěn)定性使其在受到刺激時能夠發(fā)出光。通過持續(xù)刺激釹元素,可以產(chǎn)生波長穩(wěn)定的1064nm激光,盡管這一波長超出了人眼的可見范圍。
為了有效利用激光,激光器內(nèi)部設(shè)有兩個光學(xué)鏡片,它們像閘門一樣控制光的輸出方向。此外,激光器還可以通過串聯(lián)多個單元來增強激光的能量,并通過光纖進行傳輸,這種設(shè)計被稱為光纖傳導(dǎo)激光器。
激光器的在其他的研發(fā)領(lǐng)域上也取得了顯著成就,根據(jù)激光產(chǎn)生的不同物質(zhì),科研人員開發(fā)了氣體激光器、固體激光器和半導(dǎo)體激光器等多種類型。這些激光器在各自的領(lǐng)域內(nèi)發(fā)揮著重要作用,推動了激光加工技術(shù)的廣泛應(yīng)用。
在激光的產(chǎn)生過程中,位于激光諧振腔的增益介質(zhì)在泵浦光的激勵下,將電子激發(fā)到高能級,隨后釋放光子回到低能級。這一過程涉及自發(fā)輻射、受激吸收和受激發(fā)射等多種物理現(xiàn)象。通過精確控制這些過程,實現(xiàn)了激光的高效輸出,為科研和工業(yè)應(yīng)用提供了強大的技術(shù)支持。
我們相信,隨著技術(shù)的進一步發(fā)展,激光將在更多領(lǐng)域展現(xiàn)出其無可比擬的優(yōu)勢,歐光科技也將繼續(xù)關(guān)注激光技術(shù)的未來發(fā)展。
▍最新資訊
-
準(zhǔn)直儀與工業(yè)望遠鏡在精密光學(xué)測量的應(yīng)用分析
精密制造、航空航天、光學(xué)工程等高端等領(lǐng)域,測量精度直接決定了產(chǎn)品性能與技術(shù)突破的邊界。光學(xué)測量技術(shù)憑借非接觸、高精準(zhǔn)、抗干擾性強的獨特優(yōu)勢,成為現(xiàn)代工業(yè)與科研不可或缺的核心手段。其中,準(zhǔn)直儀與工業(yè)望遠鏡作為兩類關(guān)鍵的光學(xué)測量儀器,分別承擔(dān)著光束準(zhǔn)直與遠距離目標(biāo)檢測的核心任務(wù),其原理設(shè)計與應(yīng)用實踐共同構(gòu)筑了精密測量體系的重要基礎(chǔ)。本文將系統(tǒng)解析準(zhǔn)直儀與工業(yè)望遠鏡的結(jié)構(gòu)組成、工作機制及應(yīng)用價值,探尋其在高端制造與科研領(lǐng)域占據(jù)核心地位的深層邏輯。
2026-01-09
-
電子自準(zhǔn)直儀光學(xué)如何讓角度測量達千分之一角秒精度?
在光學(xué)儀器的運作體系中,光線的傳輸與偏轉(zhuǎn)控制是決定設(shè)備性能的核心要素。當(dāng)光線需穿過多個光學(xué)元件并完成特定偏轉(zhuǎn)時,保持精準(zhǔn)的角度定位就成為技術(shù)實現(xiàn)的關(guān)鍵。傳統(tǒng)角度測量依賴操作員的目視檢查,受經(jīng)驗、注意力等主觀因素影響較大,難以滿足高精度場景的需求。而電子自準(zhǔn)直儀的出現(xiàn),徹底改變了這一現(xiàn)狀,為光學(xué)角度測量帶來了兼具精準(zhǔn)性與可靠性的技術(shù)革新。
2026-01-09
-
飛秒激光直寫技術(shù)的應(yīng)用——透明材料三維周期性光子結(jié)構(gòu)的創(chuàng)新
飛秒激光直寫技術(shù)(FLDW)作為微納制造領(lǐng)域的革命性手段,憑借其高精度、高效率的三維加工能力,突破了傳統(tǒng)制造技術(shù)在透明材料光子結(jié)構(gòu)制備中的局限。本文系統(tǒng)闡述了FLDW的技術(shù)特性與核心優(yōu)勢,深入解析了光學(xué)非線性調(diào)制和折射率調(diào)控的理論基礎(chǔ),詳細介紹了三維非線性光子晶體(3DNPCs)在非線性光學(xué)、量子光學(xué)、光束整形及全息成像等領(lǐng)域的應(yīng)用成果,最后分析了當(dāng)前技術(shù)面臨的挑戰(zhàn)并展望了未來發(fā)展方向,為該領(lǐng)域的進一步研究與產(chǎn)業(yè)化應(yīng)用提供參考
2026-01-09
-
干涉測量技術(shù)的原理、前沿突破與應(yīng)用賦能
干涉測量作為現(xiàn)代精密測量領(lǐng)域的核心技術(shù)之一,憑借其納米級測量精度和廣泛的適配性,在科研探索、工業(yè)生產(chǎn)、民生保障等多個領(lǐng)域發(fā)揮著不可替代的作用。近年來,我國在該領(lǐng)域的科研創(chuàng)新與技術(shù)應(yīng)用持續(xù)取得突破,為相關(guān)行業(yè)發(fā)展注入強勁動力。本文將系統(tǒng)闡述干涉測量技術(shù)的核心原理、前沿科研成果、光源選型要求及優(yōu)質(zhì)產(chǎn)品支撐,展望其應(yīng)用前景。
2026-01-09
