激光加工與機械加工的對比
激光,全稱是受激輻射光放大,英文全稱是:Light Amplification by Stimulate Emission of Radiation;縮寫為:Laser。它是一種新型光源,具有其他光源無法比擬的相干性、單色性、方向性和高輸出功率等特點。

將激光聚焦到一點,焦平面上的功率密度可達(dá)105-1013w/cm2.激光焊接利用激光束優(yōu)良的方向性和高功率密度來進(jìn)行工作。激光束通過光學(xué)系統(tǒng)聚焦在很小的區(qū)域上,在很短的時間內(nèi),在焊接區(qū)域形成能量高度集中的局部熱源區(qū)域,從而熔化被焊物體,形成牢固的焊點和焊縫。
與傳統(tǒng)機械加工相比,激光加工具有以下特點:
1、處理速度快;
2、熱變形和熱影響區(qū)小(適合加工高熔點、高硬度、特殊材料);
3、零件可進(jìn)行局部熱處理;
4、加工形狀復(fù)雜的零件和微小零件,也可在真空中加工;
5、加工無噪音,對環(huán)境無污染;
6、與自動控制和計算機技術(shù)相結(jié)合,易于實現(xiàn)自動化;
7、由于加工方法先進(jìn),可以改進(jìn)現(xiàn)有的產(chǎn)品結(jié)構(gòu)和材料。
延伸閱讀:
激光加工與機械加工在定義、原理和應(yīng)用方面存在顯著差異。
1、激光加工是利用高功率密度激光束照射工件,利用光能的熱效應(yīng)對材料進(jìn)行焊接、鉆孔和切割的工藝過程。基本原理主要是激光熱加工和激光冷加工。激光熱加工主要是利用激光能量產(chǎn)生的熱效應(yīng)使物體溫度升高,引起相變、熔化或汽化等來達(dá)到加工目的。主要用于金屬或非金屬材料的焊接和切割。激光冷加工利用較短波長的激光束引起和控制材料的化學(xué)反應(yīng),主要用于半導(dǎo)體工業(yè)。
2、機械加工是通過機械設(shè)備改變工件外部尺寸或性能的過程。根據(jù)加工方法不同,可分為切削加工和壓力加工,涵蓋鑄造、鍛造、沖壓、焊接等多種工藝。機械加工通常在室溫下進(jìn)行,不會引起工件的化學(xué)或物理相變,即冷加工。但在某些情況下,也可能在高于或低于正常溫度下進(jìn)行,引起工件發(fā)生化學(xué)或物理相變,即熱處理。
▍最新資訊
-
準(zhǔn)直儀與工業(yè)望遠(yuǎn)鏡在精密光學(xué)測量的應(yīng)用分析
精密制造、航空航天、光學(xué)工程等高端等領(lǐng)域,測量精度直接決定了產(chǎn)品性能與技術(shù)突破的邊界。光學(xué)測量技術(shù)憑借非接觸、高精準(zhǔn)、抗干擾性強的獨特優(yōu)勢,成為現(xiàn)代工業(yè)與科研不可或缺的核心手段。其中,準(zhǔn)直儀與工業(yè)望遠(yuǎn)鏡作為兩類關(guān)鍵的光學(xué)測量儀器,分別承擔(dān)著光束準(zhǔn)直與遠(yuǎn)距離目標(biāo)檢測的核心任務(wù),其原理設(shè)計與應(yīng)用實踐共同構(gòu)筑了精密測量體系的重要基礎(chǔ)。本文將系統(tǒng)解析準(zhǔn)直儀與工業(yè)望遠(yuǎn)鏡的結(jié)構(gòu)組成、工作機制及應(yīng)用價值,探尋其在高端制造與科研領(lǐng)域占據(jù)核心地位的深層邏輯。
2026-01-09
-
電子自準(zhǔn)直儀光學(xué)如何讓角度測量達(dá)千分之一角秒精度?
在光學(xué)儀器的運作體系中,光線的傳輸與偏轉(zhuǎn)控制是決定設(shè)備性能的核心要素。當(dāng)光線需穿過多個光學(xué)元件并完成特定偏轉(zhuǎn)時,保持精準(zhǔn)的角度定位就成為技術(shù)實現(xiàn)的關(guān)鍵。傳統(tǒng)角度測量依賴操作員的目視檢查,受經(jīng)驗、注意力等主觀因素影響較大,難以滿足高精度場景的需求。而電子自準(zhǔn)直儀的出現(xiàn),徹底改變了這一現(xiàn)狀,為光學(xué)角度測量帶來了兼具精準(zhǔn)性與可靠性的技術(shù)革新。
2026-01-09
-
飛秒激光直寫技術(shù)的應(yīng)用——透明材料三維周期性光子結(jié)構(gòu)的創(chuàng)新
飛秒激光直寫技術(shù)(FLDW)作為微納制造領(lǐng)域的革命性手段,憑借其高精度、高效率的三維加工能力,突破了傳統(tǒng)制造技術(shù)在透明材料光子結(jié)構(gòu)制備中的局限。本文系統(tǒng)闡述了FLDW的技術(shù)特性與核心優(yōu)勢,深入解析了光學(xué)非線性調(diào)制和折射率調(diào)控的理論基礎(chǔ),詳細(xì)介紹了三維非線性光子晶體(3DNPCs)在非線性光學(xué)、量子光學(xué)、光束整形及全息成像等領(lǐng)域的應(yīng)用成果,最后分析了當(dāng)前技術(shù)面臨的挑戰(zhàn)并展望了未來發(fā)展方向,為該領(lǐng)域的進(jìn)一步研究與產(chǎn)業(yè)化應(yīng)用提供參考
2026-01-09
-
干涉測量技術(shù)的原理、前沿突破與應(yīng)用賦能
干涉測量作為現(xiàn)代精密測量領(lǐng)域的核心技術(shù)之一,憑借其納米級測量精度和廣泛的適配性,在科研探索、工業(yè)生產(chǎn)、民生保障等多個領(lǐng)域發(fā)揮著不可替代的作用。近年來,我國在該領(lǐng)域的科研創(chuàng)新與技術(shù)應(yīng)用持續(xù)取得突破,為相關(guān)行業(yè)發(fā)展注入強勁動力。本文將系統(tǒng)闡述干涉測量技術(shù)的核心原理、前沿科研成果、光源選型要求及優(yōu)質(zhì)產(chǎn)品支撐,展望其應(yīng)用前景。
2026-01-09
